1,015 research outputs found

    Distributed QoS Guarantees for Realtime Traffic in Ad Hoc Networks

    Get PDF
    In this paper, we propose a new cross-layer framework, named QPART ( QoS br>rotocol for Adhoc Realtime Traffic), which provides QoS guarantees to real-time multimedia applications for wireless ad hoc networks. By adapting the contention window sizes at the MAC layer, QPART schedules packets of flows according to their unique QoS requirements. QPART implements priority-based admission control and conflict resolution to ensure that the requirements of admitted realtime flows is smaller than the network capacity. The novelty of QPART is that it is robust to mobility and variances in channel capacity and imposes no control message overhead on the network

    Quality of Service-Based Medium Access Control Mechanism for Multimedia Traffic in Mobile Ad Hoc Networks

    Get PDF
    This thesis describes an investigation on the problem of quality of service (QoS) support in mobile ad hoc networks (MANETs). The decentralized nature of wireless ad hoc networks makes them suitable for a variety of applications where central nodes cannot be relied on. This thesis presents a medium access control (MAC) QoS mechanism for multimedia applications in IEEE 802.11e based MANETs. IEEE 802.11e standard draft includes new features to facilitate and promote the provision of QoS guarantees in wireless networks with a long-term solution based on QoS-architectures. The motivation is driven by the need to support increasing demand of time-sensitive applications such as Voice over IP (VoIP) and video conferencing applications. IEEE 802.11e enhances the Distributed Coordination Function (DCF) and the Point Coordination Function (PCF) of the legacy IEEE 802.11, through a new coordination function: the Hybrid Coordination Function (HCF). Within the HCF, there are two methods of channel access: HCF Controlled Channel Access (HCCA) and Enhanced Distributed Channel Access (EDCA). EDCA operates in infrastructure-less ad hoc mode and is widely used in MANETs, unlike HCCA, which further assures QoS provisioning operates in infrastructure mode in the presence of access points (AP). Recent researches showed that EDCA lacks QoS support of real-time traffic in MANETs due to its contention based medium access method. This thesis takes HCCA QoS provisioning potentials to MANETs by implementing a MAC mechanism in which HCCA is employed on top of EDCA to work in infrastructure-less environment like MANET with the help of multiple channels. The mechanism dedicates a unique receiver-based channel to every mobile node. It will act as virtual hybrid coordinator (VHC) to exercise control over the channel in contention-free manner while maintaining a common channel in which all mobile nodes can exchange broadcast and routing related messages. The mechanism can be easily integrated with existing 802.11 systems without modification to existing protocols while ensuring a level of admission control and resource reservation over the medium. Simulation results indicate that the mechanism significantly improves the overall network throughput by 20% at the saturation point and improves average delay by 20% at the saturation point compared to pure EDCA with or without multiple channels. Even with multi-channel EDCA, our mechanism guarantees better performance in terms of throughput and MAC delay for high priority traffic in MANET. The research contribution on MAC layer can be integrated into a larger framework for QoS support in MANETs, which opens a wide range of further research in QoS provisioning in MANETs and solve QoS multi-layer design and implementation issues

    Estimating Average End-to-End Delays in IEEE 802.11 Multihop Wireless Networks

    Get PDF
    In this paper, we present a new analytic model for evaluating average end-to-end delay in IEEE 802.11 multihop wireless networks. Our model gives closed expressions for the end-to-end delay in function of arrivals and service time patterns. Each node is modeled as a M/M/1/K queue from which we can derive expressions for service time via queueing theory. By combining this delay evaluation with different admission controls, we design a protocol called DEAN (Delay Estimation in Ad hoc Networks). DEAN is able to provide delay guarantees for QoS applications in function of the application level requirements. Through extensive simulations, we compare performance evaluation of DEAN with other approaches like, for instance, DDA

    Supporting Internet Access and Quality of Service in Distributed Wireless Ad Hoc Networks

    Get PDF
    In this era of wireless hysteria, with continuous technological advances in wireless communication and new wireless technologies becoming standardized at a fast rate, we can expect an increased interest for wireless networks, such as ad hoc and mesh networks. These networks operate in a distributed manner, independent of any centralized device. In order to realize the practical benefits of ad hoc networks, two challenges (among others) need to be considered: distributed QoS guarantees and multi-hop Internet access. In this thesis we present conceivable solutions to both of these problems. An autonomous, stand-alone ad hoc network is useful in many cases, such as search and rescue operations and meetings where participants wish to quickly share information. However, an ad hoc network connected to the Internet is even more desirable. This is because Internet plays an important role in the daily life of many people by offering a broad range of services. In this thesis we present AODV+, which is our solution to achieve this network interconnection between a wireless ad hoc network and the wired Internet. Providing QoS in distributed wireless networks is another challenging, but yet important, task mainly because there is no central device controlling the medium access. In this thesis we propose EDCA with Resource Reservation (EDCA/RR), which is a fully distributed MAC scheme that provides QoS guarantees by allowing applications with strict QoS requirements to reserve transmission time for contention-free medium access. Our scheme is compatible with existing standards and provides both parameterized and prioritized QoS. In addition, we present the Distributed Deterministic Channel Access (DDCA) scheme, which is a multi-hop extension of EDCA/RR and can be used in wireless mesh networks. Finally, we have complemented our simulation studies with real-world ad hoc and mesh network experiments. With the experience from these experiments, we obtained a clear insight into the limitations of wireless channels. We could conclude that a wise design of the network architecture that limits the number of consecutive wireless hops may result in a wireless mesh network that is able to satisfy users’ needs. Moreover, by using QoS mechanisms like EDCA/RR or DDCA we are able to provide different priorities to traffic flows and reserve resources for the most time-critical applications
    corecore